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Abstract

Protein function annotation has been one of the longstanding issues in biological sci-
ences, and various computational methods have been developed. However, the exist-
ing methods suffer from a serious long-tail problem, with a large number of GO fami-
lies containing few annotated proteins. Herein, an innovative strategy named AnnoPRO
was therefore constructed by enabling sequence-based multi-scale protein representa-
tion, dual-path protein encoding using pre-training, and function annotation by long
short-term memory-based decoding. A variety of case studies based on different
benchmarks were conducted, which confirmed the superior performance of AnnoPRO
among available methods. Source code and models have been made freely available
at: https://github.com/idrblab/AnnoPRO and https://zenodo.org/records/10012272

Keywords: Protein function annotation, Long-tail problem, Protein representation,
Pre-training, LSTM

Background

Protein function annotation has been one of the longstanding issues, which is key for
discovering new drug target and understanding physiological or pathological pro-
cess [1-3]. With the advance of next-generation sequencing, a large amount of protein
sequences have been accumulated, and over 200 million sequences have been available
in UniProt [4]. Compared with the accumulation of protein sequences, the experimental
annotation of protein functions is much more challenging, which is characterized by its
natures of time-consuming and labor-intensive [5-7]. So far, only a very small portion of
protein sequences have been successfully annotated based on experimental evidence [4],
which asks for the discovery of innovative strategy to greatly accelerate the process of
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annotation [8]. Thus, many computational methods are developed to facilitate the pro-
gress of this field [9-11], which extensively promote the identification of efficacious drug
target [12], the revealing of molecular mechanism underlying sophisticated disease eti-
ology [13], and so on.

However, the annotation of protein function using computational method has been
suffering from a serious “long-tail problem” [14—16] with a large number of functional
families containing few annotated proteins. These families are categorized to the ones of
“Tail Label Levels’, while the remaining are to “Head Label Levels”. Based on the current
Gene Ontology (GO) database [17], the average numbers of proteins (ANP) in those GO
families (terms) of different GO levels were assessed and statistically described in Fig. 1,
and the number 2,000 was set as a cutoff of ANP for differentiating ‘Tail Label Levels’
from ‘Head Label Levels. As shown in Fig. 1, the total number (5,323) of GO families
in ‘Tail Label Levels' is more than 10 times larger than that (459) of ‘Head Label Levels’
[17]. In other words, the protein functional data in GO database follow a long-tailed dis-
tribution where only a few ‘head label’ families and many ‘tail label’ ones present [17].
The ‘long-tailed phenomenon’ has been reported to lead to severe degradation of annota-
tion performances due to the serious imbalance problem between the data of head and
tail [18]. This is also the principal reason for head label families dominating the training
process, making these families enjoy substantially higher accuracies than those tail label
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Fig. 1 Average number of proteins (ANP) in the GO families of nine different levels (LEVEL 2 to LEVEL 10 as
shown in Additional file 1: Fig. S3). There was a clear descending trend of ANPs from the top level (LEVEL 2) to
the bottom one (LEVEL 10). Since the ANP of one family indicated its representativeness among all families,
this figure denoted a gradual decrease of the representativeness of a family with the penetration into deeper
level. Therefore, the nine levels could be classified into two groups based on their ANPs: the “Head Label
Levels" (ANP of their GO families > 2,000) and the “Tail Label Levels" (ANP of their GO families < 2,000). As shown,
the total number (5,323) of GO families in the “Tail Label Levels"was > 10 times larger than that (459) of the
“Head Label Levels", and such kind of data distribution induced a serious 'long-tail problem’as described in the
previous pioneering publication [18]
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ones [18-20]. So far, two types of protein function annotation strategy have been con-
structed, which can be roughly divided into the sequence homology (SH) based ones and
the machine learning (ML) based ones [21].

SH-based strategy has long been used for protein function annotations [22], and many
tools have been constructed (such as BLAST and GoFDR) [23, 24], but the accuracy of
sequence alignments drops off rapidly in cases where the sequence identity/homology
falls below certain critical point [25]. To deal with this issue, ML-based strategy has
been proposed, which learns protein function irrespective of sequence homology [26—
31], including DeepGOPlus, PFmulDL and NetGO2 [14—16]. These tools apply machine
learning frameworks to achieve good protein annotation, such as NetGO2 in “4th criti-
cal assessment of functional annotation” (CAFA4) challenge [16]. However, due to the
overwhelming domination of proteins in the ‘Head Label Levels’ (the average number of
proteins in the family of Head Label Levels equals to 4,210, which is about 5 times larger
than that (886) of Tuil Label Levels, as shown in Fig. 1), it is still extremely challeng-
ing for existing methods/tools to improve the prediction accuracies for the families in
Tail Label Levels, and the “long-tail problem” in protein functional annotation remains
unsolved [32].

Herein, an innovative strategy, entitled ‘AnnoPRO; for protein function annotation was
therefore constructed. First, a sequence-based multi-scale protein representation ena-
bling the conversions of protein sequences to both feature similarity-based images and
protein similarity-based vectors was proposed. This representation is unique in not only
capturing the intrinsic correlation among protein features, but also taking the global rel-
evance among protein sequences into consideration, which can favor the applications
of some deep learning strategies popular in image classification. Second, a hybrid deep
learning framework of dual-path encoding was constructed for annotating the protein
function. Since this framework was inspired, in part, by a method [33] used for image
classification to cope with ‘long-tail problem, AnnoPRO was expected to significantly
improve the annotation performance for the GO families in the ‘Tail Label Levels.
Finally, multiple case studies using many benchmark datasets were conducted, which
further confirmed the superiority of our new strategy among the existing ones. All in all,
the AnnoPRO performed well and would become an essential complement to existing

methods in protein function prediction.

Results and discussion

A new hybrid deep learning framework for protein function annotation

Herein, a hybrid deep learning framework was constructed to enable protein function
annotations, which consisted of three consecutive modules (M1 to M3). As shown in
Fig. 2, these modules included: (MI) the sequence-based multi-scale protein repre-
sentation realizing the conversion of all protein sequences to feature similarity-based
images (ProMAP) and protein similarity-based vectors (ProSIM). Particularly, at feature
similarity scale, the similarities among protein features were utilized to transform the
‘unordered’ vector of 1,484 protein features to an ‘ordered” image-like representation; at
protein similarity scale, the pair-wise similarities between any two proteins were used to
transform the ‘independent’ vector of 1,484 protein features to a ‘globally-relevant’ vec-
tor of 92,120 dimensions. (M2) the dual-path protein encoding based on a pre-training.



Zheng et al. Genome Biology (2024) 25:41 Page 4 of 22

~

(M3) Functional Annotation
based on Protein Decoding

(M1) Multi-scale
Protein Representation (M2)

Dual-path
Protein
Encoding
Based on
Pre-training

Features (1,484)

(02126) SUIA104d

Protein Sequences

[ [ spwpueyob epr [ ]

buijood-xp\
[DUOIN|OAUO)

Proteins’
ProMAP

[buoiinjonuo)

III%DJ

(37x37x64)  (8x8x128) (8192x1)

---- : Bz oz @2
R < < Sit < <
g 8 8 8 8
T S Sit 3 L] 3
S S S: o S =
3 Rl M7 R
ProSIM T N i/ B g
_________ Qi Qi Qi Qi Qi 6,109
(92120%92120) (92120x1)  (2048x1)  (1024x1)  (512x1) (1024x1) (2048x1) GO Families

Fig. 2 The hybrid deep learning framework of three consecutive modules (M1 to M3) adopted in this study.
(MT1) the sequence-based multi-scale protein representation realizing conversion of all protein sequences
to feature similarity-based images (ProMAP) and protein similarity-based vectors (ProSIM). (M2) the dual-path
protein encoding based on pre-training. Using the ProMAP and ProSIM generated for all the sequences,

a dual-path encoding strategy was constructed based on a seven-channel Convolutional Neural Network
(7C-CNN) and Deep Neural Network of five fully-connected layers (SFC-DNN) to pre-train the features of

all CAFA4 proteins by integrating their annotation data of GO families. (M3) the functional annotation by

a LSTM-based decoding. The protein features pre-trained using the dual-path encoding layer in M2 were
concatenated and then fed into a long short-term memory recurrent neural network (LSTM) to enable a
multi-label annotation of proteins to 6,109 functional GO families using the hybrid deep learning

Using the ProMAP and ProSIM generated for all proteins, a dual-path encoding was
constructed based on a seven-channel Convolutional Neural Network (7C-CNN) and
Deep Neural Network of five fully-connected layers (5SFC-DNN) to pre-train the fea-
tures of all CAFA4 proteins by integrating their annotation data of GO families. (M3)
the functional annotation by a LSTM-based decoding. The protein features pre-trained
using the dual-path encoding layer in M2 were concatenated and then fed into a long
short-term memory recurrent neural network (LSTM) to enable a multi-label annotation
of proteins to 6,109 functional GO families using the hybrid deep learning. The details of
this hybrid deep learning framework were further elaborated in Materials and Methods.

In the hybrid deep leaning framework, the sequence-based multi-scale protein rep-
resentation was one of the key modules (M1I). As shown in Fig. 3, the way how the
conversion of all sequences to feature similarity-based images (ProMAP) and protein
similarity-based vectors (ProSIM) was described. On the one hand, a method realizing
image-like protein representations was proposed (ProMAP) for capturing the intrinsic
correlations among protein features. As illustrated in Fig. 3a, a template map for each
protein sequence was first constructed by a consecutive process of ‘protein represen-
tation’ (using PROFEAT ([34]), ‘similarity calculation’ (using Cosine Similarity [35]),
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Fig. 3 A schematic illustration of the procedure used in this study facilitating sequence-based multi-scale
protein representation. The way how sequences were converted to feature similarity-based image (ProMAP)
and protein similarity-based vector (ProSIM) was shown. (a) generation of feature/protein distance matrix
and 'template map’; (b) production of ProSIM (based on PDM) and ProMAP (based on template map) for
each protein. On the one hand, a method realizing the image-like protein representation was constructed
(ProMAP) to capture the intrinsic correlations among protein features. As illustrated, a template map for each
protein was first constructed by a consecutive process of ‘protein representation’ using PROFEAT, ‘similarity
calculation’ using cosine similarity,'dimensionality reduction’using UMAP or PCA, ‘coordinate allocation’ using
Jonker-Volgenant algorithm, etc. Then, ProMAP was produced for each protein by mapping the intensities
of all protein features to their corresponding locations in the constructed template map (illustrated on the
right side of Fig. 3b). On the other hand, an approach considering the global relevance among proteins
was proposed (ProSIM) to convert independent’ vector to a ‘globally-relevant’ protein representation. As
shown, a protein distance matrix (PDM) was first generated by following the consecutive process of ‘protein
representation’ using PROFEAT and ‘similarity calculation’ using cosine similarity. Finally, ProSIM was generated
for each protein by retrieving directly from each row of the newly generated PDM (shown in the left side of
Fig. 3b)

‘dimensionality reduction’ (using UMAP [36] or PCA [37]), ‘coordinate allocation’ (using
Jonker-Volgenant algorithm [38)), etc. Then, ProMAP was produced for each protein by
mapping the intensities of all protein features to their corresponding locations in the
constructed template map (illustrated on the right side of Fig. 3b). On the other hand,
an approach considering the global relevance among proteins was proposed (ProSIM)
to convert the ‘independent’ vector to a ‘globally-relevant’ protein representation. As
illustrated in Fig. 3a, a protein distance matrix (PDM) was first generated by following

Page 5 of 22
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a consecutive process of ‘protein representation’ (using PROFEAT [34]) and ‘similarity
calculation’ (using Cosine Similarity [35]). Finally, ProSIM was generated for each pro-
tein by retrieving directly from each row of the newly generated PDM (as shown in the
left side of Fig. 3b). All in all, these newly proposed strategies could capture the intrinsic
correlation among protein features and consider the global relevance among sequences.
The detailed description was explicitly provided in the Materials and Methods.

Comparing the overall performances among AnnoPRO and existing tools

In this study, a total of 92,120 protein sequences were first collected from the competi-
tion of ‘4th critical assessment of functional annotation’ (CAFA4, released on Oct 21,
2019) [20], and these data were adopted to construct the annotation model (Training
and Validation). Second, a process identical to that of ‘CAFA4’ for constructing the
“Independent Testing Dataset” was used, which led to a total of 5,623 SwissProt proteins
[4] with experimentally-validated functional annotation between Oct 22, 2019 and May
31, 2022. As reported, such methodology above for data partition had been frequently
adopted by previous studies [14, 16, 39] to develop the functional annotation models and
realizing the systematic comparison among existing methods/tools.

To assess the overall performance of our new strategy, a comparison among the
performances of AnnoPRO and eight popular methods (such as: Diamondpg 4¢r [24],
DeepGO [40], DeepGOCNN [14], DeepGOPlus [14], TALE [41], PFmulDL [15], NetGO2
[16], NetGO3 [31]) was conducted. The strategies of these methods to partition data had
been described in the above paragraph, and their processes of model construction were
illustrated in Supplementary Method S1. As shown in Table 1, among those eight popu-
lar methods, DeepGOPlus, PFmulDL, and NetGO3 gave the best performances on the
GO data of BP, CC, and MF, respectively (highlighted by the underline. Diamondyg; 41

provided a better F, . than NetGO3 on MF, but its AUPRC was much lower than that

max

Table 1 A comparison among the performances of AnnoPRO and eight available methods/tools

Method/Tool Date of Publication BP Ccc MF
Frnax AUPRC Fmax AUPRC Fmax AUPRC

Diamondg ;s Nov, 2014 0549 0.183 0.550 0.186 0729 0.112
DeepGO Feb, 2018 0.362 0213 0.501 0434 0.384 0.325
DeepGOCNN Jan, 2020 0.369 0.294 0516 0460 0.382 0.362
DeepGOPlus Jan, 2020 0.593 0.561 0.588 0.502 0.628 0.627
TALE Mar, 2021 0.391 0.307 0.562 0.587 0472 0458
NetGO2* Jul, 2021 0.497 0434 0574 0.508 0.667 0.674
PFmulDL Mar, 2022 0324 0.257 0.590 0.608 0412 0.371
NetGO3* Dec, 2022 0.540 0.500 0.579 0.535 0.687 0.726
AnnoPRO This Study 0.609 0.574 0.746 0.749 0.763 0.755

The values indicating the best performances among all methods/tools were highlighted in BOLD, and AnnoPRO performed
consistently the best in all Gene Ontology (GO) classes (BP, CC, MF) under both evaluating criteria (F ,,,, AUPRC). All
methods/tools were ordered according to their publication dates. BP: biological process; CC: cellular component; MF:
molecular function; F .. protein centric maximum F-measure; AUPRC: area under the precision-recall curve. The tools

marked by an asterisk (*) indicated that their source-codes for model construction were not fully provided, which made

it impossible for us to train models on experimental functional annotations that appeared before Oct 22, 2019, and their
performances (evaluated by F,,, and AUPRC) were assessed by directly uploading those experimental function annotations
asserted between Oct 22, 2019 and May 31, 2022 to the online server of those annotation tools. Among those eight existing
methods/tools, the best performing ones under each category were highlighted by underline
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of NetGO3, thus NetGO3 was considered to have the best performance on MF). These
results showed that there was no existing tool performing consistently the best under
all GO classes (BP, CC, and MF). However, as shown in Table 1, comparing with other
methods, AnnoPRO provided the best performance (highlighted in BOLD) under all GO
classes. Particularly, when comparing with the three best performing methods (Deep-
GOPlus, PFmulDL, and NetGO3), the percentages of performance enhancement var-
ied from 2.7% to 15.7% (as assessed by F,,,,) and from 2.3% to 22.2% (as assessed by
AUPRC), which illustrated a dramatical elevation in the performances of protein func-

max.

tional prediction by the new AnnoPRO strategy proposed in this study.

To have an in-depth understanding on the significant elevation in the annotation per-
formance of AnnoPRO, an ablation experiment [42] was further conducted to assess the
performance changes induced by depriving some key AnnoPRO modules. As described
in Additional file 1: Fig. S1, “No ProMAP” indicated that seven-channel convolutional
neural network (7C-CNN) was made absent from the Module 2 in Fig. 2, and “No Pro-
SIM” presented that deep neural network of five fully-connected layers (5SFC-DNN) was
deprived from the Module 2 in Fig. 2. As shown, both strategies (ProMAP and ProSIM)
adopted in this study for multi-scale protein representation contributed substantially to
the performances of AnnoPRO (13.6 ~24.2% for AUPRC; 4.6 ~22.4% for F, ,.). On the
one hand, ProMAP facilitated the discovery of the intrinsic correlations among protein

mzzx)

features by transforming the ‘unordered’ vector to an ‘ordered’ image-like representa-
tion. On the other hand, ProSIM took the global relevance among protein sequences
into consideration by converting the ‘independent’ vector to a ‘globally-relevant’ protein
representation. Moreover, as shown in Additional file 1: Fig. S1, “No LSTM” represented
that Long Short-Term Memory recurrent neural network was removed from Module 3
in Fig. 2, and “SC map” denoted that “Transformation” step in Module 2 in Fig. 2 was
deprived and only single-channel (not multi-channel) ProMAP was considered. In con-
clusion, it is clear to see that the deprivation of any key module will result in significant
decrease in the annotation performance, which indicated that all the key modules col-
lectively contributed to the good performance of AnnoPRO.

When realizing the image-like protein representation (as illustrated in Fig. 3),
there were two methods applied for ‘dimensionality reduction, which included uni-
form manifold approximation and projection (UMAP) [36] and principal component
analysis (PCA) [37]. UMAP was reported to produce arbitrary shapes and distort
distances in 2D, which could be severely biased and lead to misinterpretation [43].
Since the image-like protein representation was novel and essential for AnnoPRO, it
is needed to assess the contributions of UMAP and PCA to annotation performances.
Herein, two models AnnoPRO,;,,p and AnnoPRO,, were thus constructed based on
UMAP and PCA, respectively (the procedure for model construction and evaluation
is described above). As shown in Additional file 1: Fig. S2, the performances (assessed
by Fax
(BP, CC, MF). Particularly, AnnoPRO,;,,4p showed a slightly better predictive perfor-
mance compared with AnnoPROpq, (0.6 ~1.9% for F 1.4~2.1% for AUPRC). All
in all, although concerns were raised about the limitations of UMAP [43], the per-

and AUPRC) of these models are roughly the same across three GO classes

max’

formance evaluation conducted in this study showed that the application of different
dimensionality reduction methods (UMAP vs PCA) might not significantly alter the
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performance. Therefore, both methods (UMAP and PCA) were integrated into the
AnnoPRO software package (https://pypi.org/project/annopro/0.1rc2/) and the online
server (https://idrblab.org/annopro/).

Level-based performance comparison among AnnoPRO and existing tools

Based on those analyses above, three recently-published methods (DeepGOPlus,
PFmulDL, and NetGO3) were found to perform better than others and reported as
“state-of-the-art” by previous publication [44]. Therefore, a comparison among the
level-based performances of AnnoPRO and these SOTA methods was conducted.
The so-called level-based performances were based on the hierarchical GO families
shown in the first section of Materials and Methods and the definition in Additional
file 1: Fig. S3. As shown in Fig. 4, the level-based performances were given using AUC
value in predicting the testing data, and the performances of AnnoPRO, DeepGOPlus,
NetGO3, and PFmulDL were shown by light red, light green, orange, and light blue,
respectively (also provided in Supplementary Table S1). For GO families in ‘Head
Label Level’ (LEVEL 2 and LEVEL 3 in Additional file 1: Fig. S3), the performance
of AnnoPRO was as good as that of other methods (1.4 ~4.1% improvements in most
cases, but 0.1% decline in one case). For GO families in ‘Tail Label Level’ (LEVEL 4 to
LEVEL 10 in Additional file 1: Fig. S3), AnnoPRO provided the consistently superior

O— NetGO3 V— DeepGOPlus O PFmulDL —A— AnnoPRO
0.951@

- o
. - ) oy I I o
0.90- - I I
it
v
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0.80- 2
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Head Label Levels Tail Label Levels
Fig.4 A comparison among the performances of AnnoPRO and three representative methods. The
performances were represented using AUC values in predicting the experimentally validated new protein
functions that were not included in CAFA4 data, and the performances of AnnoPRO, DeepGOPIus, NetGO3
and PFmulDL were highlighted in light red, light green, orange and light blue, respectively. For GO families
in the 'Head Label Levels' (LEVEL 2 and LEVEL 3 provided in Additional file 1: Fig. S3), the performance of
AnnoPRO was roughly as good as that of the other three methods (1.4 ~4.1% improvements in most cases,
but 0.1% decline in one single case). For the GO families in the ‘Tail Label Levels' (LEVEL 4 to LEVEL 10 shown
in Additional file 1: Fig. S3), AnnoPRO demonstrated the consistently superior performance among four
methods (1.7 ~ 28.2% improvements in all cases). Particularly, 13 (61.9%) out of all 21 improvements were over
5%, and 6 (28.6%) out of 21 improvements were more than 10%. Therefore, AnnoPRO was identified superior
in significantly improving the annotation performances of the families in ‘Tail Label Levels' without sacrificing
that of the "Head Label Levels, which was highly expected to make contribution to solving the long-standing
'long-tail problem'[18] in functional annotation
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performance among all methods (1.7 ~28.2% improvement in all cases). Particularly,
13 (61.9%) out of all 21 improvements were over 5%, and 6 (28.6%) out of those 21
improvements were larger than 10% (as illustrated in Fig. 4).

Furthermore, as illustrated in Fig. 4, DeepGOPlus and NetGO3 performed well in
LEVEL 2 and LEVEL 3, but experienced a dramatic decline of performance from LEVEL
4 to LEVEL 10. This clearly showed that the “long tail problem” remained a serious issue
for the protein function annotation using existing methods (significantly declined from
95.1% to 69.3% for NetGO3 and from 91.8% to 81.8% for DeepGOPlus). The PFmulDL
was a method that could largely enhance the performances for the GO families in ‘Tail
Label Level, but AnnoPRO provided a much better performances in all levels than
PFmulDL (as shown in Fig. 4). In other words, AnnoPRO was the first method reported
to achieve superior performance in protein annotations for GO families in ‘Tail Label
levels without sacrificing that in ‘Head Label ones, which was therefore expected to
highly contribute to the final solution of the long-standing ‘long-tail problem:.

Performance comparison based on the proteins from a variety of species

Sequence variation among the orthologs of various species may induce subtle, or even
substantial, changes in protein structure, which may lead to proteins with similar
sequence showing different functions [45—47]. This leads to great difficulty in functional
annotations for orthologous proteins [48], and it is therefore of great interests to com-
pare the capacities of AnnoPRO and the state-of-the-art methods/tools (DeepGOPlus,
PFmulDL and NetGO3) from this perspective. In this study, the species origins of 92,120
proteins from CAFA4 (adopted as ‘Training and ‘Validation’) were first assessed, and 17
species were found (homo sapiens, mus musculus, drosophila melanogaster, etc.). In the
meantime, the species origins of 5,623 proteins (used as ‘Independent Testing’) were also
found, which discovered a total of 1,014 species (despite those 17 species, there were
many other species: bos taurus, camellia sinensis, canis lupus familiaris, gallus gallus,
mycobacterium tuberculosis, oryza sativa, etc.). Second, the 5,623 proteins were further
divided into two groups. One group included 1,859 proteins (titled ‘SameSP’) from those
17 species covered by Training and Validation datasets, and another had 3,764 proteins
(titled ‘DiffSP’) from the remaining 997 species unique in ‘Independent Testing dataset.
Third, the performances of AnnoPRO and those two state-of-the-art methods (DeepGO-
Plus and PFmulDL; NetGO3 was not included here since its source code for model con-
struction was not provided) were evaluated based on the two groups of ‘Independent
Testing’ data, and the evaluating results were provided in Table 2.

As shown in Table 2, the AnnoPRO performed the best in the vast majority of the Gene
Ontology classes (BP, CC, MF) under both evaluating criteria (F AUPRC), and those
values indicating the best performance among those three methods (AnnoPRO, Deep-
GOPlus, and PFmulDL) were highlighted in BOLD. Particularly, for the SameSP group of
independent testing data, AnnoPRO showed superior performance in both CC and MF
with significant elevations in F,,,, and AUPRC (elevated by 0.13 to 0.43), and AnnoPRO
demonstrated equivalent performance in BP comparing with DeepGOPlus with slightly
lower F,,,. and AUPRC (lower by 0.002 and 0.004, respectively); for the DiffSP group
of data, the performances of AnnoPRO stayed the best in CC and MF with significant
elevation in F,,, and AUPRC (elevated by 0.06 to 0.47), and the AnnoPRO performed

max’
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Table 2 A comparison among those performances of AnnoPRO and two state-of-the-art methods
(DeepGOPIlus and PFmulDL) on predicting two groups of Independent Testing” data (SameSP and

DiffSP)
Method BP (de MF
Fmax AUPRC Fmax AUPRC Fmax AUPRC
SameSP DeepGOPlus 0.612 0.593 0.539 0470 0.668 0.698
PFmulDL 0.347 0.286 0.573 0.603 0436 0402
AnnoPRO 0610 0.589 0.759 0.772 0.835 0.829
DiffSP DeepGOPlus 0.538 0.469 0.684 0.622 0517 0429
PFmulDL 0.261 0.176 0.593 0.580 0.354 0.273
AnnoPRO 0.602 0.552 0.742 0.741 0.749 0.739

SameSP had 1,859 proteins from 17 species covered by ‘Training’ and ‘Validation’ datasets of this study; DiffSP included 3,764
proteins from the remaining 997 species unique in ‘Independent Testing’ data of this study. Those values indicating the best
performance among all three methods were highlighted in BOLD, and AnnoPRO performed the best in the vast majority of
the Gene Ontology (GO) classes (BP, CC, MF) under both evaluating criteria (F ,,,,, AUPRC). BP biological process, CC cellular
component, MF molecular function

better in the BP comparing with DeepGOPlus (F,,,, and AUPRC were elevated by 0.06
and 0.08). All in all, the results indicated that AnnoPRO gave good predictive perfor-
mances on independent data whose species origins were covered by training-validation,
and its predictive performances on independent data whose species origins were distinct
from that of training-validation, became even better when comparing with state-of-the-
art methods. In other words, the AnnoPRO showed good capacity on predicting the
proteins that have little representativeness in training-validation data, which was very
valuable for the function annotation of novel proteins from the species not covered by
both “Training’ and ‘Validation’ datasets during model construction.

Functional annotation of the homologous proteins with distinct functions

As reported, a small variation in sequence could lead to vastly different functional out-
comes [49], which made the annotation of homologous proteins with distinct functions
a great challenge and a fascinating direction for the researchers in related research com-
munity. In order to evaluate the predictive performances of AnnoPRO and three state-of-
the-art methods on such kind of proteins, two pairs of homologous proteins of distinct
functions were then analyzed: growth differentiation factors (GDF8 and GDF11) and
heat shock proteins (HSPA1A and HSPA?2).

Case study 1 on different growth differentiation factors

Growth differentiation factors (GDFs) belong to the transforming growth factor
(TGEP) family, which regulate the aspects of central nervous system (CNS) formation
[50]. GDF11 (UniProt ID: GDF11_HUMAN, and UniProt accession: 095390) is a pro-
tein in the GDF family, which shares over 60% sequence similarity with GDF8 (myosta-
tin, MSTN, UniProt ID: GDF8_HUMAN, and UniProt accession: O14793) and more
than 90% sequence identity in the active domain [51]. As well-known, the interaction
between GDF8 and follistatin-288 (FS288) formed complex to bind heparin, which
defined the molecular mechanisms underlying GDF8’s key GO family: ‘heparin binding
(GO:0008201) [52]. Different from GDF8, the varied residues in GDF11 made it una-
ble to interact with FS288, and it therefore suffered from the loss of ‘heparin binding
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function [53]. The sequences between GDF8’s and GDF11’s active domains were aligned
in Fig. 5a, where varied residues between two GDFs were marked in light green and blue
background, respectively. Combined with the structural superimpositions (as illustrated
in Fig. 5b) between GDF8 (light green) and GDF11 (blue) [54], three varied residue pairs
(F315Y, V316M and L318M located in the binding surface between GDF and FS288)
were found key for ‘heparin binding [55].

In this study, the ‘heparin binding function (GO:0008201) for the wild type GDF8
(GDF8-WT) and its two mutants (GDF8-Mutant-1 and GDF8-Mutant-2) was pre-
dicted using AnnoPRO and three state-of-the-art tools (DeepGOPlus, PFmulDL,
NetGO3). GDF8-Mutant-1 contains eight mutations (D267N, F268L, T277S, E312Q,
H328Q, G355D, E357Q, A366G), which locate far away from the binding interface
between GDF8 and FS288. The interaction between GDF8-WT and FS288 forms

a complex binding with heparin, which is the molecular mechanism underlying
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Fig. 5 Performance assessment of four methods using two well-known growth differentiation factors (GDF8,
GDF11). As reported, the interaction between GDF8 and follistatin-288 (FS288) formed a protein complex

to bind heparin, which defined the molecular mechanisms underlying GDF8's key GO family:‘heparin
binding' (GO:0008201) [52]. Different from GDFS8, the varied residues in GDF11 made it unable to interact with
FS288, and it therefore suffered from the loss of the ‘heparin binding' function [53]. (a) Sequence alignment
between GDF8 and GDF11, where varied residues between two GDFs were marked in light green and blue
background, respectively. Three residue pairs (F315Y,V316M, and L318M on the binding surface between the
GDF8 and FS288) which were found as key residue indicating GDFs"heparin binding' function [55], were given
in pink background. (b) Structure superimposition between GDF8 (light green) and GDF11 (blue) and their
interactions with FS288 (gray surface). As highlighted in pink background, three residue pairs (F315Y,V316M,
L318M) located in the binding interface between GDF and FS288. (c) function annotation results predicted
by the methods. If a GO family is successfully predicted by a method, a colored circle would be adopted to
indicate that prediction result. Particularly, a successful prediction made by AnnoPRO, NetGO3, PFmulDL or
DeepGOPlus was indicated by a circle of light red, orange, light blue or light green, respectively. As described,
AnnoPRO is the only one that can successfully predict all GO families for both GDFs

Page 11 of 22
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GDF8-WT'’s ‘heparin binding function (GO:0008201). Since all eight mutations were
far away from the binding interface between GDF8 and FS288, it is expected that hep-
arin binding function remains in GDF8-Mutant-1 [55]. Meanwhile, GDF8-Mutant-2
contains three mutations (F315Y, V316M, L318M, on the binding surface between
GDE8 and FS288), which were reported as the key residues indicating GDF8'’s hepa-
rin binding function [55]. In other words, it is expected that GDF8-Mutant-2 loses
its wild type’s ‘heparin binding function [55]. All in all, there is gain-of-function of
‘heparin binding’ in GDF8-WT and GDF8-Mutant-1, while there is loss-of-function
in GDF8-Mutant-2. As described in Table 3, ‘Success’ denoted that the gain/loss-of-
function is successfully predicted by method, while ‘Fail’ showed that the prediction
by method is incorrect. As shown, AnnoPRO was the only method that “successfully”
captured the significant functional variations induced by small amount of residue
mutations among GDFE8 proteins.

Moreover, the sequences of GDF8 and GDF11 were reported to be highly homol-
ogous, but their functions were distinct with 291 different GO families. Therefore,
it was of great interests to test the predictive performances of AnnoPRO and three
state-of-the-art tools on this issue. As shown in Table 4, AnnoPRO performed the
best in the vast-majority (11/12) of the GO classes (BP, CC, and MF) under differ-
ent evaluation criteria (both recall, and precision). Taking the GO class of MF as an
example (illustrated in Fig. 5¢), GDF8 and GDF11 contained 19 and 10 MF families,
respectively, and the functions annotated by those four methods were highlighted. If
a MF family is successfully predicted by method, a colored circle will be used to indi-
cate the prediction result. As illustrated in Fig. 5¢, the successful prediction made by
AnnoPRO, NetGO3, PFmulDL or DeepGOPlus was indicated by a circle of light red,
orange, light blue or light green, respectively, and AnnoPRO is the only one that can
successfully predict all MF families for both GDFs.

Table 3 The prediction of the ‘heparin binding' function (GO:0008201) for the wild type GDF8
(GDF8-WT) and two GDF8 mutants (GDF8-Mutant-1, and GDF8-Mutant-2) using AnnoPRO and three
representative methods

Methods GDF8-WT* GDF8-Mutant-1? GDF8-Mutant-22
DeepGOPlus Fail Fail Success
PFmulDL Fail Fail Success

NetGO3 Success Success Fail

AnnoPRO Success Success Success

‘Success’ denotes that the gain/loss-of-function is successfully predicted by the corresponding method, while ‘Fail’ indicates
that it is incorrectly predicted. As demonstrated, significant functional variations among GDF8-WT, GDF8-Mutant-1, and
GDF8-Mutant-2 can only be “successfully” captured by our newly developed AnnoPRO

2Wild type GDF8 (GDF8-WT) is a growth differentiation factor of 375 amino acids. There are two GDF8 mutants (GDF8-
Mutant-1 and GDF8-Mutant-2). GDF8-Mutant-1 contained eight mutations (D267N, F268L, T277S, E312Q, H328Q, G355D,
E357Q, and A366G) which locate far away from the binding interface between GDF8 and follistatin-288 (FS288). The
interaction between GDF8-WT and FS288 formed a protein complex to further bind to heparin. This is the molecular
mechanism underlying GDF8-WT's key GO term:‘heparin binding’ (GO:0008201). Because all eight mutations were far away
from the binding interface between GDF8 and FS288, it is expected that the ‘heparin binding’ function remains in GDF8-
Mutant-1 [55]. Meanwhile, GDF8-Mutant-2 contains three mutations (F315Y,V316M, and L318M, on the binding surface
between GDF8 and FS288) which are reported as the key residues indicating protein’s ‘heparin binding’ function [55]. In
other words, it is expected that GDF8-Mutant-2 loses its wild type’s ‘heparin binding’ function [55]. All in all, there is gain-of-
function of ‘heparin binding’ in both GDF8-WT and GDF8-Mutant-1, while there is loss-of-function in GDF8-Mutant-2
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Table 4 A comparison among the predictive performances of AnnoPRO and three representative
methods for the functional annotations of two well-known growth differentiation factors (GDFS,

GDF11)
Protein Name Methods BP CcC MF
Recall Precision Recall Precision Recall Precision

GDF8 DeepGOPlus 0.578 0.320 0.333 1.000 0.389 0.333
PFmulDL 0.333 0.198 0.667 0.400 0444 0.444
NetGO3 0.351 0.806 1.000 0.375 1.000 0.783
AnnoPRO 0.898 0.898 1.000 0.731 1.000 1.000

GDF11 DeepGOPlus 0.402 0.306 0.625 0.714 0.222 1.000
PFmulDL 0.404 0494 0.875 0412 0.556 0.833
NetGO3 0.553 0.547 0.750 0.750 0.778 1.000
AnnoPRO 0.621 0.952 1.000 0.833 1.000 1.000

Those values indicating the best performances among all methods were highlighted in BOLD, and AnnoPRO performed
the best in the vast-majority (11/12) of the Gene Ontology (GO) classes (BP, CC, MF) under both evaluating criteria (recall,
precision). All methods were ordered based on their publication dates. BP Biological process, CC Cellular component, MF
Molecular function, GDF8 Growth differentiation factor 8, GDF11 Growth differentiation factor 11

Table 5 A comparison among the predictive performances of AnnoPRO and three representative
methods for the functional annotations of two well-known heat shock 70kDa proteins (HSPATA,

HSPA2)
Protein Name Methods BP cC MF
Recall Precision Recall Precision Recall Precision

HSPATA DeepGOPlus 0.358 0.357 0410 0.889 0.605 0.812
PFmulDL 0.635 0457 0.615 0.800 0.814 0.500
NetGO3 0.286 0.876 0.634 0.605 0.809 0.884
AnnoPRO 0.641 0.715 0.595 0.962 0.917 0.936

HSPA2 DeepGOPlus 0.375 0.284 0.39%4 0.867 0.765 0.765
PFmulDL 0.344 0.386 0419 0.812 0.788 0.605
NetGO3 0.346 0.605 0419 0.684 0.757 0.903
AnnoPRO 0.470 0.851 0.594 0.670 0.868 0.943

Those values indicating the best performances among all methods were highlighted in BOLD, and AnnoPRO performed

the best in the vast-majority (9/12) of the Gene Ontology (GO) classes (BP, CC, MF) under both evaluating criteria (recall,

precision). All methods were ordered based on their publication dates. BP biological process, CC cellular component, MF
molecular function, HSPATA heat shock 70 kDa protein 1A, HSPA2 heat shock 70 kDa protein 2

Case study 2 on different heat shock proteins

Heat shock proteins (HSPs) are ubiquitous and conserved proteins in prokaryotic
and eukaryotic organisms, which are essential for maintaining cellular proteosta-
sis [56]. Herein, two heat shock 70kDa protein were analyzed: HSPA1A (UniProt ID:
HS71A_HUMAN, and UniProt accession: PODMV8) and HSPA2 (UniProt ID: HS71B_
HUMAN, and UniProt accession: PODMV9). The sequence similarity between HSPA2
and HSPA1A exceeds 80% (assessed using BLAST), while the total number of different
GO families between these two proteins is more than 300. Therefore, it was of great
interest to assess the predictive performances of AnnoPRO and three state-of-the-art
tools on this particular study. As demonstrated in Table 5, our AnnoPRO performed the
best in the vast-majority (9/12) of the GO classes under both evaluating criteria (recall
and precision). Taking the GO class of MF as an example (illustrated in Additional
file 1: Fig. S4 for HSPA1A and Additional file 1: Fig. S5 for HSPA2), the HSPA1A and
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HSPA2 had 44 and 35 MF families, respectively, and the functions annotated by those
four methods were highlighted. If a MF family is successfully predicted by method, a
colored circle will be used to indicate the prediction result. As illustrated, the success-
ful prediction made by AnnoPRO, NetGO3, PFmulDL or DeepGOPlus was indicated
by a circle of light red, orange, light blue or light green, respectively, and AnnoPRO
is the only one that reach>90% accuracies in predicting MF families for both HSPs.
Furthermore, there were 16 different MF families between HSPA1A and HSPA2 (high-
lighted by red frames in Additional file 1: Fig. S4 for HSPA1A and Additional file 1:
Fig. S5 for HSPA2). As shown, AnnoPRO performed the best in most (13/16) families,
while NetGO3, PFmulDL, DeepGOPlus successfully predicted 7, 10 and 3 families,
respectively.

Validating the stability of AnnoPRO using additional benchmark datasets

To validate the effectiveness and stability of AnnoPRO model, its performance was eval-
uated on additional datasets and compared with the SOTA methods of PFmulDL and
DeepGOPlus (since NetGO3 did not provide its training code, it could not be retrained
and evaluated for comparison). Particularly, two benchmark datasets were collected
from a pioneering study [32] that explicitly evaluated many strategies of protein repre-
sentation. The first dataset was named ‘PROBE’ in the original publication [32], which
consisted of 20,421 unique human proteins of distinct sequences. Following the same
criterion (using Oct 22, 2019 as a cutoff date) used in CAFA4 for partitioning data, all
these proteins were partitioned to 18,058 proteins (adopted as ‘Training’ and ‘Valida-
tion’ datasets for model construction) and 2,363 proteins (adopted as Independent Test-
ing’ data). The AnnoPRO, DeepGOPlus, and PFmulDL models were then retrained using
these partitioned data. As shown in Table 6, AnnoPRO achieved the best performances
on all GO classes (BP, CC, and MF), when compared with the other two models. Par-
max and AUPRC of AnnoPRO were substantially higher (4.5~ 18.8% and
4.9 ~24.0%, respectively) than that of two other models, which further validated its
effectiveness and stability in protein function annotation.

ticularly, the F

The second dataset was entitled ‘ontology-based PFP benchmark’ in the original
publication [32], which contained 25 sub-datasets. As shown in ‘Table S5’ of that

Table 6 A comparison among those performances of AnnoPRO and two state-of-the-art methods
(DeepGOPIlus and PFmulDL) on constructing annotation models based on the benchmark named
‘PROBE’ in the original study [32], which consisted of 20,421 unique human proteins of distinct

sequences
Method/Tool BP (de MF

Fmax AUPRC Fmax AUPRC Frnax AUPRC
DeepGOPlus 0.584 0.574 0.645 0.712 0.683 0.687
PFmulDL 0.533 0.526 0.623 0.682 0.648 0.651
AnnoPRO 0.643 0.664 0.652 0.717 0.709 0.709

By following the same criterion (using Oct 22, 2019 as a cutoff date) as that used by CAFA4 for data partitioning, 18,058
proteins were adopted as ‘Training and Validation’ data for model construction and 2,363 proteins were used as ‘Independent
Testing’ dataset. The AnnoPRO, DeepGOPIus, and PFmulDL models were then retrained using these partitioned data. The
values indicating the best performance among three methods were highlighted in BOLD, and AnnoPRO performed the best
in all GO classes (BP, CC, MF) under both evaluating criteria (F,,,, AUPRC). BP biological process, CC cellular component, MF
molecular function
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pioneering study [32], the protein representation method ‘ProtT5-XL’ gave the best-
performances in most (16 out of 18) of the GO groups/categories, while the method
‘ProtALBERT’ gave the best-performances in the remaining two categories. Thus, it
was of interest to compare the annotation performances among AnnoPRO, DeepGO-
Plus, PFmulDL, and the best-performing methods (BPM) under different GO cat-
egories using the same sub-datasets and partition strategy (fivefold) as that of the
original publication [32]. Their performances (assessed using ‘F,,,,’ that was the same
as the original study [32]) under the 18 GO categories were provided separately in
Fig. 6 according to BP, MF, and CC. As shown, AnnoPRO gave the best performances
in most (17 out of 18) of the GO categories, which further validated the effective-
ness and stability of AnnoPRO in functional annotation. It is necessary to emphasize
that the performances of BPMs of the original publication are generated by multitask
prediction model (based on SVM). If this prediction model is further optimized to
the one that is well complementary to the studied protein representation method, it
would be highly anticipated that the corresponding performance of functional anno-
tation could be further elevated.

4 + (a) Biological Process
0.9] 1+
+
0.8 + + s
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4 + + +
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Fig. 6 A comparison among the performances of AnnoPRO and three methods (DeepGOPlus, PFmulDL,

and BPM) under six GO categories using the same sub-datasets and partition strategy as that of a previous
publication [32]. BPM: the best-performing methods for the ‘ontology-based PFP benchmark’in that original
publication. The performances were assessed based on F ., and the performances of AnnoPRO, BPM,
DeepGOPlus, and PFmulDL were highlighted in light red, orange, light green, and light blue, respectively. Each
of those quadrangular-stars represented the best-performing model under a particular GO category and

GO class. (a) Biological Process; (b) Molecular Function; and (c) Cellular Component. As illustrated, the AnnoPRO
demonstrated the best performances in the vast majority (17 out of 18) of the studied GO categories
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Conclusion

Here, a novel strategy, AnnoPRO, was constructed by enabling a) the sequence-based
multi-scale protein representation, b) the dual-path protein encoding using pre-train-
ing, and c¢) the functional annotation by LSTM-based decoding. Case studies based on
benchmarks were conducted, which sufficiently confirmed the superior performance of
AnnoPRO among available methods.

Methods

The collection of benchmark datasets for model construction

In this study, a total of 92,120 protein sequences were collected from the competition
of CAFA4 challenge [20], and the method adopted for data partition was described in
the second section of Results and Discussion. Then, the biological functions (denoted
by GO families) of all proteins were matched directly from UniProt knowledgebase [4].
Like existing tools [14, 40], only those GO families with relatively large number of pro-
teins (more than 50) were included into the model construction process of this study,
which consisted of a total of 6,109 non-repetitive GO families. Moreover, the full rela-
tions among these families were downloaded from GO database [19].

Within the downloaded files, GO families were provided in a hierarchical structure. As
illustrated in Additional file 1: Fig. S3, three root families were provided at the top of the
structure, which included biological process (BP), molecular function (MF), and cellular com-
ponent (CC). Then, the remaining GO families were hierarchically connected to the three
root ones. In this study, the level of those root families was defined as ‘LEVEL 1’ (as shown in
Additional file 1: Fig. S3). The direct child families of the root ones were classified to LEVEL
2, and the families of LEVEL 3 were determined by the direct child families of LEVEL 2. The
following levels can be therefore deduced in the same manner. Based on our comprehen-
sive evaluation on all GO data, the bottom level of GO’ hierarchical structure was LEVEL
11, which had no child family and composed of the smallest number of proteins comparing
with the families in other levels (LEVEL 1 to 10). As shown in Fig. 1, the average numbers of
proteins (ANP) in GO families of nine levels (LEVEL 2 to LEVEL 10) were provided. There
was a clear descending trend of ANPs from LEVEL 2 to LEVEL 10. Since the ANP of one
family indicated its representativeness among all families, this denoted a gradual decrease
of the representativeness of a family with the penetration into deeper level. Thus, these nine
levels could be classified into two groups based on their ANPs: the “Head Label Levels” (ANP
of their GO families > 2,000) and the “Tail Label Levels” (ANP of their GO families < 2,000).
As shown, the total number (5,323) of families in “Tail Label Levels” was over 10 times larger
than that (459) of the “Head Label Levels’, and such data distribution was typical for any
research studies that were suffering from the ‘long-tail problem’ [15, 16].

The construction of novel hybrid deep learning framework

Three consecutive modules integrated in the framework

As demonstrated in Fig. 2, three modules were consecutively integrated, which
included: (M1) sequence-based module for multi-scale protein representation;
(M2) dual-path protein encoding module based on pre-training; (M3) protein
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decoding-based functional annotation module using LSTM method. Detailed descrip-
tion on three modules were explicitly discussed as follows.

Module 1. A new sequence-based method for multi-scale protein representation A
multi-scale protein representation method was proposed to realize the conversion of
sequences to feature similarity-based images (ProMAP) and protein similarity-based
vectors (ProSIM). As shown in Fig. 3a, the descriptors of all CAFA4 proteins were first
calculated using PROFEAT [34], which offered a total of 1,484 descriptors of seven
classes: amphiphilic pseudo amino acid composition, amino acid composition, molecular
interaction, amino acid autocorrelation, quasi-sequence-order, physicochemical property
and pseudo amino acid composition (the descriptions on each class were shown in Sup-

plementary Table S2). Second, a new protein-descriptor matrix (PM) was generated (pro-

vided in Fig. 3a), and any original number (xfj"g ) in this matrix was normalized to x;;"""
using following equation, where f; denoted the i’ feature, minf; and maxf; indicated the

min and max value of i feature among all proteins, respectively.

orig .
gorm _ 5~ i
Y maxf; — minf;

Third, the feature distance matrix (FDM) was produced by calculating pair-wise dis-
tances among 1,484 features using the newly generated protein-descriptor matrix (PM,
each feature such as f; and fj, was represented by a vector of 92,120 length) based on
the following equation:

Jaofp

distance(f4,f,) =1 —
Vo) =1 = 5

FDM was then adopted to reset the locations of protein features in a map (named ‘zem-
plate map’), which is considered as one of the key steps in the image-like protein repre-
sentation (as shown in Fig. 3a). Particularly, the process of “feature reset” based on FDM
consisted of two key steps: ‘dimensionality reduction’ (by applying UMAP [36] or PCA
[37] for reducing the dimensionality of each feature from 1,484D to 2D) and ‘coordinate
allocation’ (by applying J-V algorithms [38] to allocate all those 1,484 features to distinct
coordinates in a 39 x 39 map, named ‘template map’). The details on the “feature reset”
process were further given in Supplementary Method S2.

Based on the ‘template map’ generated in Fig. 3a, the ProMAP was produced for each
protein by mapping the intensities of all protein features to the corresponding loca-
tions in ‘template map’. As illustrated on the right side of Fig. 3b, ProMAP for each pro-
tein realized the transformation of ‘unordered’ vector of 1,484 protein features to the
‘ordered’ image-like representation, which is unique in capturing the intrinsic correla-
tions among protein features and enabling a subsequent application of any deep learning
methods that were popular in current image classification.

Fourth, a protein distance matrix (PDM) was further generated by calculating pair-
wise distances among 92,120 proteins using the protein-descriptor matrix (each protein
including p, and py, was represented by a vector of 1,484 length) based on the following
distance equation:
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Pa ® Pp

distance(pg,pp) =1 — ————
pall > llpsl

Based on the PDM generated in Fig. 3a (highlighted in blue color), the ProSIM was produced
for each protein by directly retrieving the corresponding column within PDM. As illustrated
on the left side of Fig. 3b, the ProSIM of each protein realized the transformation of ‘inde-
pendent’ vector of 1,484 protein features to a ‘globally-relevant’ vector of 92,120 dimensions.

Module 2. A novel dual-path protein encoding method based on a pre-training In this
module, a deep learning-based framework integrating seven-channel convolutional neural
network (7C-CNN) and a deep neural network of five fully-connected layers (5FC-DNN) to
pre-train the features of protein was adopted. Such pre-train process was expected to be
effective in transferring functional family information for optimizing the concatenated pro-
tein features [57], which could extensively facilitate the application of the long short-term
memory (LSTM) neural network for function annotation in next module [58]. Particularly,
as illustrated in Fig. 2, the ProMAPs (39 x 39) for 92,120 proteins were transformed to 7
images of multi-channel based on the different classes of protein descriptor, and the mul-
tiple convolutional and max-pooling layers were used for learning the protein functions;
the ProSIMs (92,120 x 1) for 92,120 proteins were extracted from protein distance matrix
(PDM), and neural network of five fully-connected layers (5SFC-DNN) was applied to encode
protein sequences. By concatenating those two vectors from ProMAP and ProSIM, a total
of 92,120 concatenated protein encoding vectors were created, and a fully-connected layer
was further applied to refine the protein encoding by comparing with the 6,109 GO func-
tion families well-defined in Gene Ontology. As a result, 92,120 protein encodings were pre-
trained, which were then fed into LSTM for multilabel functional annotation [33].

Module 3. Protein decoding-based functional annotation using LSTM method In this
module, the long short-term memory neural network (LSTM) was used to decode pro-
teins for annotating their functions. LSTM had been utilized to cope with “long-tail
problem” in multi-label image classification studies, since it could learn dependency
among various labels [59-61]. As shown in Fig. 2, a three-layer LSTM was first proposed
to learn hierarchical relationships among 6,109 GO families using those protein encod-
ings pre-trained in Module 2. The arrows in LSTM (between any two neuros, as illus-
trated in Fig. 2) denoted that the value of the previous neuron (the starting point of an
arrow) was adopted to adjust that of the subsequent one (the end-point of that arrow).
Finally, ensemble learning was applied to integrate sequence similarity into functional
prediction, and all proteins could be annotated into a total of 6,109 families.

A variety of model parameters and their optimization

Various deep learning strategies were integrated into the development of AnnoPRO in
this study, which included the convolutional neural network (CNN), deep neural network
(DNN), and long short-term memory (LSTM). First, CNN contained two convolution lay-
ers (with their kernel size set to 3 x 3 and stride set to 1) and another two max-pooling
layers (with their pool length set to 2 and stride set to 1). Second, the number of fully-
connected layers (FC) for developing the DNN models of this study was set to 5. Third,
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the number of layers for constructing the LSTM models of this study was set to 3, and a
total of 256 neurons were given for each layer. Finally, the input data were optimized to
a time step of 11 (as shown in Additional file 1: Fig. S6). All in all, the parameters above
were optimized using empirical analysis based on model performances.

During model development, a variety of parameters were optimized and systemati-
cally provided in Supplementary Table S3. First, 80% of 92,120 proteins from the CAFA4
benchmark dataset were selected as the training dataset, and the remaining 20% pro-
teins were used as the validation data, which was in accordance with previous study [62].
Then, the ‘mini batch size’ and ‘learning rate’ for Module 2 in Fig. 2 were given to 32
and 0.0002, respectively, with activation function for CNN and FC set to Rectified Lin-
ear Unit (ReLU). Third, ‘mini batch size’ and ‘learning rate’ of Module 3 in Fig. 2 were
also set to 32 and 0.0002, respectively, with the activation function for LSTM set to
Hyperbolic Tangent function (Tanh) [63]. At the end of each training epoch, the mod-
els’ convergences on validation dataset were carefully monitored, and the model of the
best performance was identified based on early stopping [64]. Finally, the focal loss was
implemented into training process to control the direction of model optimization [65].

The measurements facilitating performance evaluation

Two well-established measures were adopted in this study for evaluating the model per-
formances, which were widely adopted in the critical assessment of functional annota-
tion (CAFA) challenge [20]. The measures included: area under the precision-recall curve
AUPRC is frequently applied for
the evaluation of binary classifiers, especially for assessing the classes of unbalanced data,
which is a numeric value between 0 and 1 [66]. The closer AUPRC is to 1, the better the pre-
diction performance is [66]. F,,,,’s strength lies in its interpretability, which is also a numeric

(AUPRC) and protein centric maximum F-measure (F ).

value between 0 and 1 [20]. The closer the F,, is to 1, the better the prediction performance
is. These two measures (AUPRC and F,,,) provided an overall performance assessment of
protein functional prediction among different methods, but they were not intuitively enough
for predicting a specific protein [67]. Thus, additional measures were adopted into this analy-
sis, which included ‘recall’ and ‘precision’ [68]. Particularly, ‘recall’ evaluated at what percent-
age the true functions of a protein were successfully predicted, and the closer the recall is to
100%, the more the actual protein functions are annotated. Precision showed what percent-
age the predicted functions of a protein were true, and the closer the precision is to 100%, the
more accurately the protein functional annotations are annotated.
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